The thermodynamics of dense non-commutative fermion gases

F G Scholtz

National Institute for Theoretical Physics (NITheP)
Stellenbosch University

WITS
17 August 2012
Outline

1. Introduction and Motivation
2. Formulation of non-commutative quantum mechanics
3. Interpretation of non-commutative quantum mechanics
4. Spectrum of the 2-D infinite spherical well
5. Thermodynamics of a 2-D non-commutative Fermi gas
6. Thermodynamics close to the critical density
7. Thermodynamics of a 3-D non-commutative Fermi gas
8. Conclusions
Our attempts to unify gravity and quantum mechanics suggests that we need to rethink the structure of space-time at short (Planck) length scales. One possible scenario, for which Doplicher et al gave rather compelling arguments, is that of non-commutative space-time.
Our attempts to unify gravity and quantum mechanics suggests that we need to rethink the structure of space-time at short (Planck) length scales. One possible scenario, for which Doplicher et al gave rather compelling arguments, is that of non-commutative space-time.

This raises the natural question: How do we do quantum mechanics on non-commutative spaces and what are the physical consequences?
Our attempts to unify gravity and quantum mechanics suggests that we need to rethink the structure of space-time at short (Planck) length scales. One possible scenario, for which Doplicher et al gave rather compelling arguments, is that of non-commutative space-time.

This raises the natural question: How do we do quantum mechanics on non-commutative spaces and what are the physical consequences?

One expects that the effects of non-commutativity on the one particle level will be minute and not experimentally detectable.
Introduction and Motivation (contd)

For large numbers of particles the effects of non-commutativity may, however, be on a macroscopic scale. It therefore makes sense to investigate the thermodynamics of such systems to detect the physical consequences of non-commutativity and to investigate the appropriateness of different types of non-commutativity.
For large numbers of particles the effects of non-commutativity may, however, be on a macroscopic scale. It therefore makes sense to investigate the thermodynamics of such systems to detect the physical consequences of non-commutativity and to investigate the appropriateness of different types of non-commutativity.

Here we focus on two and three dimensional non-commutative Fermi gases in the high density limit, where the effects of non-commutativity are expected to show up.
Formulation of NC quantum mechanics

In commutative quantum mechanics there are three fundamental structures:
In commutative quantum mechanics there are three fundamental structures:

- The classical configuration space (\mathbb{R}^2 in two dimensions),
In commutative quantum mechanics there are three fundamental structures:

- The classical configuration space (R^2 in two dimensions),
- The Hilbert space in which the states of the system are represented ($L^2(R^2)$ in two dimensions),
Formulation of NC quantum mechanics

In commutative quantum mechanics there are three fundamental structures:

- The classical configuration space \((R^2\text{ in two dimensions})\),
- The Hilbert space in which the states of the system are represented \((L^2(R^2)\text{ in two dimensions})\),
- A unitary representation of the Heisenberg algebra on the Hilbert space.
Formulation of NC quantum mechanics

In commutative quantum mechanics there are three fundamental structures:

- The classical configuration space (\mathbb{R}^2 in two dimensions),
- The Hilbert space in which the states of the system are represented ($L^2(\mathbb{R}^2)$ in two dimensions),
- A unitary representation of the Heisenberg algebra on the Hilbert space.

Our first step will be to identify the non-commutative analogues of these.
Formulation of NC quantum mechanics (contd)

- Non-commutative configuration space is defined by the commutation relations $[\hat{x}, \hat{y}] = i\theta$
Formulation of NC quantum mechanics (contd)

- Non-commutative configuration space is defined by the commutation relations $[\hat{x}, \hat{y}] = i\theta$
- Defining annihilation and creation operators $b = \frac{1}{\sqrt{2\theta}}(\hat{x} + i\hat{y})$, $b^\dagger = \frac{1}{\sqrt{2\theta}}(\hat{x} - i\hat{y})$ non-commutative configuration space, \mathcal{H}_c, is isomorphic to Fock space
Formulation of NC quantum mechanics (contd)

- Non-commutative configuration space is defined by the commutation relations $[\hat{x}, \hat{y}] = i\theta$
- Defining annihilation and creation operators

 $b = \frac{1}{\sqrt{2\theta}}(\hat{x} + i\hat{y})$, $b^\dagger = \frac{1}{\sqrt{2\theta}}(\hat{x} - i\hat{y})$

 non-commutative configuration space, \mathcal{H}_c, is isomorphic to Fock space
- Hilbert space of the non-commutative quantum system

 $\mathcal{H}_q = \left\{ \psi(\hat{x}, \hat{y}) : \psi(\hat{x}, \hat{y}) \in B(\mathcal{H}_c) , \text{tr}_c(\psi^\dagger(\hat{x}, \hat{y})\psi(\hat{x}, \hat{y})) < \infty \right\}$
Formulation of NC quantum mechanics (contd)

- Non-commutative configuration space is defined by the commutation relations $[\hat{x}, \hat{y}] = i\theta$
- Defining annihilation and creation operators
 $b = \frac{1}{\sqrt{2\theta}}(\hat{x} + i\hat{y}), \quad b^\dagger = \frac{1}{\sqrt{2\theta}}(\hat{x} - i\hat{y})$ non-commutative configuration space, \mathcal{H}_c, is isomorphic to Fock space
- Hilbert space of the non-commutative quantum system
 $\mathcal{H}_q = \left\{ \psi(\hat{x}, \hat{y}) : \psi(\hat{x}, \hat{y}) \in \mathcal{B}(\mathcal{H}_c), \ tr_c(\psi^\dagger(\hat{x}, \hat{y})\psi(\hat{x}, \hat{y})) < \infty \right\}$
- This space has a natural inner product and norm
 $(\phi(\hat{x}_1, \hat{x}_2), \psi(\hat{x}_1, \hat{x}_2)) = tr_c(\phi(\hat{x}_1, \hat{x}_2)^\dagger\psi(\hat{x}_1, \hat{x}_2))$.
The next step in building the quantum system is to find a representation for the non-commutative Heisenberg algebra on \mathcal{H}_q. In two dimensions this reads

$$[x_i, p_j] = i\hbar \delta_{i,j}, \quad [x_i, x_j] = i\theta \epsilon_{i,j} \quad [p_i, p_j] = 0.$$
The next step in building the quantum system is to find a representation for the non-commutative Heisenberg algebra on \mathcal{H}_q. In two dimensions this reads

$$\begin{align*}
[x_i, p_j] &= i\hbar \delta_{i,j}, \\
[x_i, x_j] &= i\theta \epsilon_{i,j}, \\
[p_i, p_j] &= 0.
\end{align*}$$

A unitary representation of this algebra in terms of operators \hat{X}_i and \hat{P}_i acting on \mathcal{H}_q is easily found to be

$$\begin{align*}
\hat{X}_i\psi(\hat{x}_1, \hat{x}_2) &= \hat{x}_i\psi(\hat{x}_1, \hat{x}_2), \\
\hat{P}_i\psi(\hat{x}_1, \hat{x}_2) &= \frac{\hbar}{\theta} \epsilon_{i,j}[\hat{x}_j, \psi(\hat{x}_1, \hat{x}_2)],
\end{align*}$$

i.e., the position acts by left multiplication and the momentum adjointly.
Interpretation of NC quantum mechanics

The interpretation is as in usually quantum mechanics with \mathcal{H}_q representing the state space, i.e., physical observables are represented by hermitian operators on \mathcal{H}_q, a measurement yields an eigenvalue, a, with probability $\text{tr}(\rho \pi_a)$ with ρ the density matrix and $\pi_a = |a\rangle \langle a|$ the projection on the eigenstate $|a\rangle$.
The interpretation is as in usually quantum mechanics with \mathcal{H}_q representing the state space, i.e., physical observables are represented by hermitian operators on \mathcal{H}_q, a measurement yields an eigenvalue, a, with probability $\text{tr}(\rho \pi_a)$ with ρ the density matrix and $\pi_a = |a)(a|$ the projection on the eigenstate $|a\rangle$.

Position measurement is, however, different as we cannot construct simultaneous eigenstates of \hat{X}_1 and \hat{X}_2. However, we can give meaning to this in the sense of a weak measurement (POVM), based on minimal uncertainty states for position.
The Hamiltonian for the spherical well reads

\[\hat{H} = \frac{P^2 \psi}{2\mu} + (V_1 P + V_2 Q). \]

with

\[P = \sum_{n=0}^{M} |n\rangle\langle n|, \quad Q = \sum_{n=M+1}^{\infty} |n\rangle\langle n|. \]

The radius of the disc is given by \(R^2 = \theta(2M + 1). \)
Spectrum of the 2-D infinite spherical well

The energies of the infinite well for positive angular momentum is obtained as

\[L^m_{M+1} \left(\frac{\theta k^2}{2} \right) = 0, \ m \geq 0, \quad k^2 = \frac{2\mu E}{\hbar^2}, \]

and for negative angular momentum as

\[L^m_{M+m+1} \left(\frac{\theta k^2}{2} \right) = 0, \ -M \leq m < 0, \quad k^2 = \frac{2\mu E}{\hbar^2}, \]
Figure: Spectrum of the infinite non-commutative well: Note that the spectrum truncates at angular momentum \(-M\) and for each value of angular momentum.
TD of a 2-D NC Fermi gas

The q-potential for the grand canonical ensemble with fixed averaged total angular momentum reads

\[q(M, \tilde{\beta}, \tilde{\mu}, \tilde{\omega}) = \sum_{m=-M}^{\infty} \sum_{r} \log[1 + e^{-\tilde{\beta}(x_{r,m} - \tilde{\mu} - \tilde{\omega}m)}] \]

in terms of the dimensionless parameters \(\tilde{\beta} = E_0 \beta \), \(\tilde{\mu} = \mu / E_0 \) and \(\tilde{\omega} = \hbar \omega / E_0 \) with \(E_0 = \hbar^2 / (\theta m_0) \) and with \(x_{r,m} \) the zeros of the Laguerre polynomials.
The q-potential for the grand canonical ensemble with fixed averaged total angular momentum reads

\[q(M, \tilde{\beta}, \tilde{\mu}, \tilde{\omega}) = \sum_{m=-M}^{\infty} \sum_{r} \log[1 + e^{-\tilde{\beta}(x_{r,m}-\tilde{\mu}-\tilde{\omega}m)}] \]

in terms of the dimensionless parameters \(\tilde{\beta} = E_0 \beta, \)
\(\tilde{\mu} = \mu/E_0 \) and \(\tilde{\omega} = \hbar \omega/E_0 \) with \(E_0 = \hbar^2/(\theta m_0) \) and with \(x_{r,m} \)
the zeros of the Laguerre polynomials.

The central (dimensionless) thermodynamic quantities are

\[N = \frac{1}{\tilde{\beta}} \frac{\partial q}{\partial \tilde{\mu}}, \quad L = \frac{1}{\hbar} \frac{\partial q}{\partial \tilde{\omega}}, \quad \frac{S}{k} = q - \tilde{\beta} \frac{\partial q}{\partial \tilde{\beta}} \]
We also define dimensionless measures of the density and pressure by \(\tilde{\rho} = \frac{N}{(2M + 1)} \) and \(\tilde{P} = \frac{q}{(\tilde{\beta}(2M + 1))} \).
TD of a 2-D NC Fermi gas (contd)

* We also define dimensionless measures of the density and pressure by \(\tilde{\rho} = N/(2M + 1) \) and \(\tilde{P} = q/(\tilde{\beta}(2M + 1)) \).

* In the thermodynamic limit the q-potential can be written as

\[
q(M, \tilde{\beta}, \tilde{\mu}, \tilde{\omega}) = \int_{-M}^{\infty} dm \int_{x-(m)}^{x+(m)} dx \, D(x, m) \log[1 + e^{-\tilde{\beta}(x-\tilde{\mu}-\tilde{\omega}m)}]
\]

where \(D(x, m) \) is the asymptotic density of the zeros of the Laguerre polynomials

\[
D(x, m) = \frac{\sqrt{4Mx - (m-x)^2}}{2\pi x}, \quad x \in [x-(m), x+(m)]
\]
Introduction and Motivation
Formulation of non-commutative quantum mechanics
Interpretation of non-commutative quantum mechanics
Spectrum of the 2-D infinite spherical well
Thermodynamics of a 2-D non-commutative Fermi gas
Thermodynamics close to the critical density
Thermodynamics of a 3-D non-commutative Fermi gas
Conclusions

TD of a 2-D NC Fermi gas: Low densities

- In the low density limit the density of states in the \(m \) angular momentum sector can be approximated by

\[
D(E) \approx \sqrt{\frac{2m_0 R^2 E}{\hbar^2} - m^2} \frac{2\pi E}{2}\pi E}
\]

This coincides precisely with the density of states for a commutative Fermi gas and one recovers the commutative result in the low density limit.
Introduction and Motivation
Formulation of non-commutative quantum mechanics
Interpretation of non-commutative quantum mechanics
Spectrum of the 2-D infinite spherical well
Thermodynamics of a 2-D non-commutative Fermi gas
Thermodynamics close to the critical density
Thermodynamics of a 3-D non-commutative Fermi gas
Conclusions

TD of a 2-D NC Fermi gas: High densities

![Graph showing thermodynamics of a 2-D non-commutative Fermi gas at high densities.]
The first observation is that for the non-commutative gas there exists a maximum (critical) density at which the system is incompressible. Generally this correspond to macroscopic system sizes.
The first observation is that for the non-commutative gas there exists a maximum (critical) density at which the system is incompressible. Generally this corresponds to macroscopic system sizes.

In the high density, low temperature limit the q-potential can be computed from which the critical (maximum) density for $L = 0$ follows to be $	ilde{\rho}_c = M \nu_c$ with

$$\nu_c = \frac{(3 + 2\sqrt{3})}{12}.$$
The entropy and pressure close to the critical density can also be computed easily:

\[S \sim \sqrt{M} \sqrt{M \nu_c - \tilde{\rho}}, \quad \tilde{P} \sim \frac{M^{5/2}}{\sqrt{M \nu_c - \tilde{\rho}}}. \]
The entropy and pressure close to the critical density can also be computed easily

\[S \sim \sqrt{M} \sqrt{M \nu_c - \tilde{\rho}}, \quad \tilde{P} \sim M^{5/2} / \sqrt{M \nu_c - \tilde{\rho}}. \]

As the density approaches the critical density the entropy vanishes and the pressure diverges.
TD close to the critical density

- The entropy and pressure close to the critical density can also be computed easily

\[S \sim \sqrt{M} \sqrt{M \nu_c - \tilde{\rho}}, \quad \tilde{P} \sim M^{5/2} / \sqrt{M \nu_c - \tilde{\rho}}. \]

- As the density approaches the critical density the entropy vanishes and the pressure diverges.

- How does the entropy of a very dense gas, close to its maximum density, behave as a function of size when more particles are added and the size of the object increased, but in such a way that the density is always kept very close to the maximal density?
This turns out to be

\[S(M_c) \sim \sqrt{2\nu_c} \sqrt{M_c} \sim R_c \]

as \(R_c^2 = \theta(2M_c + 1) \). Thus the entropy scales like the circumference, rather than the area at minimal size.
What is the thermodynamics of a 3 dimensional non-commutative Fermi gas based on the following commutation relations:

\[[x_i, x_j] = i\theta_{i,j} \]
TD of a 3-D NC Fermi gas

- What is the thermodynamics of a 3 dimensional non-commutative Fermi gas based on the following commutation relations:

\[[x_i, x_j] = i\theta_{i,j} \]

- Through an appropriate choice of coordinates it is always possible to restrict the non-commutativity to two of the spacial coordinates with the third coordinate being commutative and the q-potential can be computed as before and the following transpire:
At low densities the thermodynamics coincides with that of a commutative Fermi gas
At low densities the thermodynamics coincides with that of a commutative Fermi gas.

At high densities a cross-over to the thermodynamics of a one-dimensional Fermi gas occurs and there is no incompressibility. This seems to rule out these commutation relations, and the associated breaking of rotational symmetry, as unphysical.
Thermodynamics of a 3-D non-commutative Fermi gas (contd)

- At low densities the thermodynamics coincides with that of a commutative Fermi gas.
- At high densities a cross-over to the thermodynamics of a one-dimensional Fermi gas occurs and there is no incompressibility. This seems to rule out these commutation relations, and the associated breaking of rotational symmetry, as unphysical.
- A more appropriate set of commutations relations may be those for the fuzzy sphere:

\[[x_i, x_j] = i\theta\epsilon_{i,j,k} x_k \]
Conclusions

Non-commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.
Conclusions

- Non-commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.
- The thermodynamics of a 2 dimensional non-commutative Fermi gas deviates strongly from that of the commutative gas at high densities:
Conclusions

- Non-commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.
- The thermodynamics of a 2 dimensional non-commutative Fermi gas deviates strongly from that of the commutative gas at high densities:
 - There is a maximal (critical) density,
Non-commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.

The thermodynamics of a 2 dimensional non-commutative Fermi gas deviates strongly from that of the commutative gas at high densities:

- There is a maximal (critical) density,
- At the critical density the entropy vanishes,
Conclusions

- Non-commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.
- The thermodynamics of a 2 dimensional non-commutative Fermi gas deviates strongly from that of the commutative gas at high densities:
 - There is a maximal (critical) density,
 - At the critical density the entropy vanishes,
 - At the critical density pressure diverges and the system is incompressible,
Conclusions

- Non-commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.
- The thermodynamics of a 2 dimensional non-commutative Fermi gas deviates strongly from that of the commutative gas at high densities:
 - There is a maximal (critical) density,
 - At the critical density the entropy vanishes,
 - At the critical density pressure diverges and the system is incompressible,
 - Close to the critical density entropy scales like the circumference rather than area of the minimal size.
In 3 dimensions the symmetry breaking commutation relations seem inappropriate.